A covalently bound photoisomerizable agonist. Comparison with reversibly bound agonists at electrophorus electroplaques

نویسندگان

  • HA Lester
  • ME Krouse
  • MM Nass
  • NH Wassermann
  • BF Erlanger
چکیده

After disulphide bonds are reduced with dithiothreitol, trans-3- (alpha-bromomethyl)-3'-[alpha- (trimethylammonium)methyl]azobenzene (trans-QBr) alkylates a sulfhydryl group on receptors. The membrane conductance induced by this "tethered agonist" shares many properties with that induced by reversible agonists. Equilibrium conductance increases as the membrane potential is made more negative; the voltage sensitivity resembles that seen with 50 [mu]M carbachol. Voltage- jump relaxations follow an exponential time-course; the rate constants are about twice as large as those seen with 50 muM carbachol and have the same voltage and temperature sensitivity. With reversible agonists, the rate of channel opening increases with the frequency of agonist-receptor collisions: with tethered trans-Qbr, this rate depends only on intramolecular events. In comparison to the conductance induced by reversible agonists, the QBr-induced conductance is at least 10-fold less sensitive to competitive blockade by tubocurarine and roughly as sensitive to "open-channel blockade" bu QX-222. Light-flash experiments with tethered QBr resemble those with the reversible photoisomerizable agonist, 3,3',bis-[alpha-(trimethylammonium)methyl]azobenzene (Bis-Q): the conductance is increased by cis {arrow} trans photoisomerizations and decreased by trans {arrow} cis photoisomerizations. As with Bis-Q, ligh-flash relaxations have the same rate constant as voltage-jump relaxations. Receptors with tethered trans isomer. By comparing the agonist-induced conductance with the cis/tans ratio, we conclude that each channel's activation is determined by the configuration of a single tethered QBr molecule. The QBr-induced conductance shows slow decreases (time constant, several hundred milliseconds), which can be partially reversed by flashes. The similarities suggest that the same rate-limiting step governs the opening and closing of channels for both reversible and tethered agonists. Therefore, this step is probably not the initial encounter between agonist and receptor molecules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional stoichiometry at the nicotinic receptor. The photon cross section for phase 1 corresponds to two bis-Q molecules per channel

These experiments examine changes in the agonist-induced conductance that occur when the agonist-receptor complex is perturbed. Voltage-clamped Electrophorus electroplaques are exposed to the photoisomerizable agonist trans-Bis-Q. A 1-microsecond laser flash photoisomerizes some trans-Bis-Q molecules bound to receptors; because the cis configuration is not an agonist, receptor channels close wi...

متن کامل

Rates and equilibria for a photoisomerizable antagonist at the acetylcholine receptor of Electrophorus electroplaques

Voltage-jump and light-flash experiments have been performed on isolated Electrophorus electroplaques exposed simultaneously to nicotinic agonists and to the photoisomerizable compound 2,2'-bis-[alpha-(trimethylammonium)methyl]-azobenzene (2BQ). Dose-response curves are shifted to the right in a nearly parallel fashion by 2BQ, which suggests competitive antagonism; dose-ratio analyses show appa...

متن کامل

Rates and equilibria at the acetylcholine receptor of electrophorus electroplaques. A study of neurally evoked postsynaptic currents and of voltage-jump relaxations

Kinetic measurements are employed to reconstruct the steady-state activation of acetylcholine [Ach] receptor channels in electrophorus electroplaques. Neurally evoked postsynaptic currents (PSCs) decay exponentially; at 15 degrees C the rate constant, alpha, equals 1.2 ms(-1) at 0 mV and decreases e-fold for every 86 mV as the membrane voltage is made more negative. Voltage-jump relaxations hav...

متن کامل

Conductance increases produced by bath application of cholinergic agonists to Electrophorus electroplaques

When solutions containing agonists are applied to the innervated face of an Electrophorus electroplaque, the membrane's conductance increases. The agonist-induced conductance is increased at more negative membrane potentials. The "instantaneous" current-voltage curve for agonist-induced currents is linear and shows a reversal potential near zero mV; chord conductances, calculated on the basis o...

متن کامل

Analysis of sodium and potassium redistribution during sustained permeability increases at the innervated face of Electrophorus electroplaques

Cholinergic agonists cause an increase in the membrane permeability of Na and K at the innervated face of Electrophorus electroplaques. Therefore, sustained exposure to agonist reduces Na and K concentration gradients. There gradients are monitored with voltage-clamp sequences and pharmacological treatments that selectively measure the Nernst potentials for individual ions. EK is normally near-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 75  شماره 

صفحات  -

تاریخ انتشار 1980